Home
Class 12
MATHS
The three distinct point A(t1^2, 2t1), B...

The three distinct point `A(t_1^2, 2t_1), B(t_2^2,2t_2)` and `C (0, 1)` are collinear, if

Promotional Banner

Similar Questions

Explore conceptually related problems

The points (a t_1^2, 2 a t_1),(a t_2^2, 2a t_2) and (a ,0) will be collinear, if

Show that the points (a t_1^2, 2 a t_1)(a t_2^2, 2 a t_2) and (a, 0) are collinear if t_1 t_2=-1

If the points : A(at_(1)^(2),2at_(1)),B(at_(2)^(2),2at_(2)) and C(a,0) are collinear,then t_(1)t_(2) are equal to

Show that the points (at_(1)^(2),2at_(1)) , (at_(2)^(2),2at_(2)) and (a,0) are collinear if t_1t_2 =-1 .

If (t, 2t), (-2, 6), and (3, 1) are collinear, t =

If t_1, t_2 and t_3 are distinct, the points (t_1, 2at_1+at_1^3), (t_2,2at_2+at_2^3) and (t_3,2at_3+at_3^3) are collinear if

If the points P (0,3,2), Q(1,2,-2) and R (4,-1,t) are collinear, find the value of t.

If t_1,t_2 and t_3 are distinct, the points (t_1, 2at_1 + at_1^3), (t_2, 2at_2 + at_2^3), (t_3, 2at_3 +at_3^3) are collinear then show that t_1+t_2+t_3=0 .

If the points (a ,0),(a t1 ^ 2,\ 2a t_1)a n d\ a t2^ 2,\ 2a t_2) are collinear, write the value of t_1t_2dot