Home
Class 10
MATHS
[" If the roots of the quadratic equatio...

[" If the roots of the quadratic equation "(a^(2)+b^(2))x^(2)-2(ac+bd)x+(c^(2)+d^(2))=0" are "],[" real and equal,then prove that "ad=bc" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the quadratic equation (a^(2)+b^(2))x^(2)-2(ac+bd)x+(c^(2)+d^(2))=0 be equal then prove that (a)/(b)=(c)/(d)

If the roots of the quadratic equation (a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0 are equal, prove that a/b=c/d .

The roots of the equation (a^(2)+b^(2))x^(2)-2(bc+ad)x+(c^(2)+d^(2))=0 are equal if

If the roots of the equation (a^(2) + b^(2))x^(2) - 2(ac + bd) x + (c^(2) + d^(2)) = 0 are equal prove that (a)/(b) = (c )/(d)

If the roots of the equation (a^(2)+b^(2))x^(2)-2(ac+bd)x+(c^(2)+d^(2))=0 are equal,prove that (a)/(b)=(c)/(d)

Show that if the roots of the equation (a^(2)+b^(2))x^(2)+2x(ac+bd)+c^(2)+d^(2)=0 are real,they will be equal

If the roots of the equation (a^(2)+b^(2))x^(2)+2(bc+ad)x+(c^(2)+d^(2))=0 are real then a^(2),bd,c^(2) are in

If the equation (a^(2)+b^(2))x^(2)-2 (ac +bd)x+c^(2)+d^(2)=0 , has equal roots , then

If the roots of the equation (a^(2)+^(2))x^(2)-2(ac+bd)x+(c^(2)+d^(2))=0 are equal , prove that (a)/(b)=(c )/(d)

If the roots of the equation (a^(2)+b^(2))x^(2)+2(bc+ad)x+(c^(2)+d^(2))=0 are real then a^(2),bd,c^(2) are in :