Home
Class 12
MATHS
If A is a 2xx2 matrix such that A^(2)-4A...

If A is a `2xx2` matrix such that `A^(2)-4A+3I=O`, then prove that `(A+3I)^(-1)=7/24 I-1/24 A`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(3)=O , then prove that (I-A)^(-1) =I+A+A^(2) .

If A^(3)=O , then prove that (I-A)^(-1) =I+A+A^(2) .

If A^(3)=O , then prove that (I-A)^(-1) =I+A+A^(2) .

If A^(3)=O , then prove that (I-A)^(-1) =I+A+A^(2) .

If A is a square matrix such that A^(2)=1 then (A-I)^(3)+(A+I)^(3)-7A is equal to

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals

If A=[(2,-1),(-1,2)] , then show that A^(2) -4A +3I=O .

If A=[{:(3,1),(-1,2):}] then prove that A^(2)-5A+7I=O

If A=[3-24-2] and I=[1001], then prove that A^(2)-A+2I=O

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals: a) 4A^(2)+2A+7I b) -(4A^(2)+2A+7I) c) -(4A^(2)-2A+7I) d) 4A^(2)+2A-7I