Home
Class 12
MATHS
" If "y=e^(x)(sin x+cos x)," then show t...

" If "y=e^(x)(sin x+cos x)," then show that "(d^(2)y)/(dx)-2(dy)/(dx)+2y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If y=sin^(-1) x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=e^(-x)cos x, show that (d^(2)y)/(dx^(2))=2e^(-1)sin x

If y=2sin x+3cos x, show that (d^(2)y)/(dx^(2))+y=0

If y=2sin x+3cos x, show that (d^(2)y)/(dx^(2))+y=0

If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .