Home
Class 11
MATHS
[" 13.A "5=0.04c(4)-4C(1)" as "C(4)+^(4)...

[" 13.A "5=0.04c_(4)-4C_(1)" as "C_(4)+^(4)C_(2)20C_(4)-C_(3)*c_(1)^(10)C_(4)=(101)^(4)R_(19)k(1)/(101)s_((D))s],[[" (A) "1," (A) "1],[" 40"c_(0)^(2)-1^(10)C_(1)^(2)+^(10)C_(2)^(2)-...-(1^(10)C_(9))^(2)+(^(10)C_(10))^(2),=],[(4)0,(B)(^(10)C_(5))^(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

^10(C_(0))^(2)-^(10)(C_(1))^(2)+^(10)(C_(2))^(2)-......-(^(10)C_(9))^(2)+(^(10)C_(10))^(2)=

"^10(C_0)^2 - "^10(C_1)^2 + "^10(C_2)^2 - ...... - ( "^10C_9)^2 + ( "^10C_10)^2=

(1+x)^(10)*(1+(1)/(x))^(20)is1^(30)C_(5)(2)^(10)C_(5)-3)^(20)C_(5)-4)^(30)

"^10(C_0)^2 + "^10(C_1)^2 + "^10(C_2)^2 + ...... + ( "^10C_9)^2 + ( "^10C_10)^2=

Sum of the series S = 3^(-1)(""^(10)C_(0))-""^(10)C_(1)+(3)(""^(10)C_(2))-3^(2)(""^(10)C_(3))+…+3^(9)(""^(10)C_(10)) is

Prove that ""^(10)C_(2)+2xx^(10)C_(3)+^(10)C_(4)=^(12)C_(4)

The sum (1)/(2)""^(10)C_(0)-""^(10)C_(1)+2.""^(10)C_(2)-2^(2)*""^(10)C_(3)+ . . .+2^(9)*""^(10)C_(10) equals:

2.^(10)C_(0)-^(10)C_(1)-^(10)C_(2)+2*^(10)C_(3)-^(10)C_(4)-^(10)C_(5)+2*^(10)C_(6)-^(10)C_(7)-^(10)C_(8) +2*^(10)C_(9)-^(10)C_(10)=