Home
Class 12
MATHS
Let sin^(-1)x + sin^(-1)y= sin^(-1)(xsqr...

Let `sin^(-1)x + sin^(-1)y= sin^(-1)(xsqrt(1-y^2) +ysqrt(1-x^2))` , then find the area represented by the locus of point (x, y) if `|x| le 1 , |y| le 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(-1)x+sin^(-1)y=sin^(-1)(xsqrt(1-y^2)+ysqrt(1-x^2))

sin^-1 x+ sin^-1 y = sin^-1[x 1-y^2 + y 1- x^2]

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))] then find (dy)/(dx)

sin^(-1)(xsqrt(x)),0 le x le 1

sin^(-1)(xsqrt(x)),0 le x le 1

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

Find (dy/dx) , if y=sin ^(-1) x+sin ^(-1) sqrt(1-x^2) , -1 le x le 1

Find (dy)/(dx) , If y= sin^(-1) x + sin^(-1) sqrt(1 -x^(2)), 0 le x le 1