Home
Class 10
MATHS
If a, b are the zeroes of f(x) = x^2 + 3...

If a, b are the zeroes of `f(x) = x^2 + 3x + 1` and c, d are the zero of `g(x) = x^2+ 4x + 1` then the value `E=((a - c)(b - c)(a + a)(b+d))/2`is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x-a is a factor of x^3-3x^2a+2a^2x+b , then the value of b is (a) 0 (b) 2 (c) 1 (d) 3

If f(x)=x^3+b x^2+c x+d and 0 < b^2 < c , then f(x) is

If the polynomial f(x)=a x^3+b x-c is divisible by the polynomial g(x)=x^2+b x+c , then a b= (a) 1 (b) 1/c (c) -1 (d) -1/c

If the sum of the zeros of the polynomial f(x)=2x^3-3k x^2+4x-5 is 6 , then the value of k is (a) 2 (b) 4 (c) -2 (d) -4

If a, b, c, d are the roots of the equation x^(4) - 100x^(3)+2x^(2)+4x+10=0 , then the value of (1)/(a)+(1)/(b)+(1)/(c)+(1)/(d) is

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If alpha,\ beta are the zeros of polynomial f(x)=x^2-p(x+1)-c , then (alpha+1)(beta+1)= (a) c-1 (b) 1-c (c) c (d) 1+c

If alpha,\ beta,\ gamma are the zeros of the polynomial f(x)=a x^3+b x^2+c x+d , then 1/alpha+1/beta+1/gamma= (a) b/d (b) c/d (c) -c/d (d) c/a

If a, b,c , d are the roots of the equation : x^(4) + 2x^(3) + 3x^(2) + 4x + 5 = 0 , then 1 + a^(2) + b^(2) + c^(2) + d^(2) is equal to :