Home
Class 12
MATHS
If f(x)=tanx and A,B,C are the anlges of...

If `f(x)=tanx and A,B,C` are the anlges of `/_\ABC, then |(f(A), f(pi/4) f(pi/4)), (f(pi/4), f(B) f(pi/4)), (f(pi/4), f(pi/4) f(C))|= (A) 0 (B) -2 (C) 2 (D) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = tna x and A, B , C are the angles of DeltaABC , then |{:(f(A),f(pi//4),f(pi//4)),(f(pi//4),f(B),f(pi//4)),(f(pi//4),f(pi//4),f(C)):}|

If f(x)=cos[pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=0 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1

If f(x)=|cosx| , find f^(prime)(pi/4) and f^(prime)((3pi)/4) .

If f(x)=cos[pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=-1 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1/sqrt(2)

f:R rarr R , f(x)=tan^(-1)(2^x) + k is an odd function, then k= (A) -pi/4 (B) (pi)/(4) (C) -(pi)/(2) (D) (pi)/(2)

If f(x)=|cos x|, find f'((pi)/(4)) and f'((3 pi)/(4))

If f(x)=|cos x|, find f'((pi)/(4)) and f'((3 pi)/(4))

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=-1 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s f(x)+f(pi) (b) f(x)+2(pi) f(x)+f(pi/2) (d) f(x)+2f(pi/2)