Home
Class 11
MATHS
Question 19. Using the mathematical arri...

Question 19. Using the mathematical arrival principle, prove that all positive integers. For = (x ") = nxt-1.

Promotional Banner

Similar Questions

Explore conceptually related problems

Using mathematical induction prove that d(x^n)/dx = nx^(n-1) for all positive integers n.

Using mathematical induction prove that d/(dx)(x^n)=n x^(n-1) for all positive integers n.

Using mathematical induction prove that (d)/(dx)(x^n)= nx^(n-1) for all positive integers n.

Using mathematical induction prove that d/(d x)(x^n)=n x^(n-1) for all positive integers n .

Using mathematical induction prove that (d)/(dx)(x^(n))=nx^(n-1) for all positive integers n.

Using mathematical induction prove that (d)/(dx) (x^(n))= n x^(n-1) for all positive integers n.

Using principle of mathematical induction prove that sqrtn = 2 .

Using principle of mathematical induction prove that sqrtn = 2 .

Using principle of mathematical induction prove that sqrtn = 2 .

Using principle of mathematical induction prove that sqrtn = 2 .