Home
Class 12
MATHS
Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 the...

Let `f(x) =1+2sin(e^x/(e^x+1))` `x ge 0` then `f^(-1)(x) ` is equal to (assuming f is bijectve)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =(x+1)^2-1,x ge -1 then {x: f(x) =f^(-1)(x) } =

f(x)=e^(x)/([x+1]),x ge 0

f(x)=e^(x)/([x+1]),x ge 0

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

Let f(x)=(e^-x)/(1+[x]) , then

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

range of f(x)=e^(x)/([x]+1),x ge 0