Home
Class 12
MATHS
If f(x) is polynomial function such that...

If f(x) is polynomial function such that `f(x) +f'(x) +f"(x)+f"'(x)=x^3` and `g(x)=int(f(x))/x^3` and `g(1)=1` then g(e) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

g(x) is inverse function of f(x). find f'(x) or f'(1) if g(x)=x^(^^)3+e^(^^)(x/2)

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f(x) and g(x) are two functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) then I: f(x) is an even function II : g(x) is an odd function III : Both f(x) and g(x) are neigher even nor odd.