Home
Class 12
MATHS
Find the domain of f(x)=1/(sqrt(x-[x])) ...

Find the domain of `f(x)=1/(sqrt(x-[x]))` (b) `f(x)=1/(log[x])` `f(x)=log{x}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of (a) f(x)=1/(sqrt(x-[x])) (b) f(x)=1/(log[x]) (c) f(x)=log{x}

Find the domain of (a) f(x)=1/(sqrt(x-[x])) (b) f(x)=1/(log[x]) (c) f(x)=log{x}

Find the domain of f(x)=(1)/(sqrt(x-|x|))(b)f(x)=(1)/(log|x])f(x)=log{x}

Find the domain of f(x)=log(x-|x|) .

Domain of f(x)=sqrt(log_({x})[x])

Find the Domain of f(x)=(x-1)^(ln x)

Find the domain of f(x) = sin log(sqrt(4-x^(2))/(1-x))

Find the domain of f(x) = sqrt(log_(10)((3-x)/x))

The domain of f(x)=sqrt(log(2x-x^(2))) is :

The domain of f(x)=sqrt(x-2)+(1)/(log(4-x)) is