Home
Class 11
MATHS
" If "G(x)=-sqrt(25-x^(2))," then "lim(x...

" If "G(x)=-sqrt(25-x^(2))," then "lim_(x rarr1)(G(x)-G(1))/(x-1)" has the value "

Promotional Banner

Similar Questions

Explore conceptually related problems

If G(x)=-sqrt(25-x^(2)) , then lim_(xrarr1) (G(x)-G(1))/(x-1)=?

If G(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (G(x)-G(1))/(x-1) =

If f(x)=-sqrt(25-x^(2)) then find lim_(x rarr1)(f(x)-f(1))/(x-1)

If g(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (g(x)-g(1))/(x-1) =

If G(x)=-sqrt(25-x) . Then lim_(xrarr1) (G(x)-G(1))/(x-1) has the value

If G(x)=-sqrt(25-x) . Then lim_(xrarr1) (G(x)-G(1))/(x-1) has the value

If G(x) = -sqrt(25-x^2) then lim_(x to 1) (G(x)-G(1))/(x-1) = ?

If G(x)=(1)/(sqrt(25-x^(2))) , then lim_(xto4)(G(x)-G(4))/(x-4) has the value :

If G(x)=-sqrt(25-x^(2)) ,find the value of lim(x rarr1)(G(x)-G(1))/(x-1)