Home
Class 11
MATHS
" Let "f(2)=4,f'(2)=4." Then "lim(x rarr...

" Let "f(2)=4,f'(2)=4." Then "lim_(x rarr2)(xf(2)-2f(x))/(x-2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

Let f(2)=4,f'(2)=4 .Then Lt_(x rarr2)(xf(2)-2f(x))/(x-2) is :

lim_(x rarr2)(f(x)-f(2))/(x-2)=

Let f(2)=4 and f'(2)=4 . Then lim_(x->2)(xf(2)-2f(x))/(x-2) is equal to

Let f(2)=4 and f'(2)=4 . Then lim_(xto2)(xf(2)-2f(x))/(x-2) is given by :

Let f(2)=4 and f'(2)=4 then Lt_(x to 2) (xf(2)-2f(x))/(x-2)=

Let f(2) =4and f '(2) =4, then lim _(xto2)(x f(2) -2f(x))/(x-2) is equal to-

if f(2)=4,f'(2)=1 then lim_(x->2){xf(2)-2f(x)}/(x-2)