Home
Class 11
MATHS
" If "f(4)=4,f(4)=1" then "lim(x rarr4)(...

" If "f(4)=4,f(4)=1" then "lim_(x rarr4)(2-sqrt(f(x)))/(2-sqrt(x))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(4)=4,f'(4)=1, then lim_(x in4) (2-sqrt(f(x)))/(2-sqrt(x)) is equal to

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to

If f(1)=1,f'(1)=2 then lim_(x rarr1)(sqrt(f(x)-1))/(sqrt(x)-1) is equal to

lim_(x rarr4)(sqrt(x)-2)/(x-4)=

lim_(x rarr3)(sqrt(3x)-3)/(sqrt(2x-4)-sqrt(2)) is equal to

If f(9)=9,f'(9)=4,then(lim)_(x rarr9)(sqrt(f(x))-3)/(sqrt(x)-3)=

If f(4)=g(4)=2;f'(4)=9;g'(4)=6 then lim_(x rarr4)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to

If f(4)=g(4)=f'(4)=9,g'(4)=6, then (lim_(x rarr)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to 3sqrt(2)b(3)/(sqrt(2))c.0d .does not exists

lim_(x rarr4)(3x-8sqrt(x+4))/(5x-9sqrt(x)-2)