Home
Class 12
MATHS
(cos x)/(sin^(2)x)dx=pi sin(pi)/(2 pi)si...

(cos x)/(sin^(2)x)dx=pi sin(pi)/(2 pi)sin pi

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

If the expression cos(x-3(pi)/(2))+sin(3(pi)/(2)+x)+sin(32 pi+x)-18cos(19 pi-x)+cos(56 pi+x)-sin(x+17 pi) is expressed in the form of a sin x+b cos x, then a+b is equal to

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

u,=int_(0)^((pi)/(2))cos((2 pi)/(3)sin^(2)x)dx and v,=int_(0)^((pi)/(2))cos((pi)/(3)sin x)dx

If A=int_((rho)/(2))^((pi)/(2))cos(sin x)dxB=int_(0)^((pi)/(2))sin(cos x)dx and C=int_(0)^((pi)/(2))cos(x)dx

If int_(0)^(pi//2) sin^(6) x dx = (pi)/(32) then int_(-pi)^(pi) (sin^(6)x + cos^(6) x)dx=