Home
Class 9
MATHS
(xy)^(n)=x^(n)xx ....

`(xy)^(n)=x^(n)xx` _______.

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is an odd integer but not a multiple of 3, then prove that xy(x+y)(x^(2)+y^(2)+xy) is a factor of (x+y)^(n)-x^(n)-y^(n).

If n is an odd integer but not a multiple of 3, then prove that xy(x+y)(x^(2)+y^(2)+xy) is a factor of (x+y)^(n)-x^(n)-y^(n).

x^n - y^n = (x-y) (x^(n-1) + x^(n-2) y + … + xy^(n-2) + y^(n-1)) , x,y in R

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

If xy = (x+y)^(n) and dy/dx = y/x, then n =

If xy = (x + y)^(n) and (dy)/(dx) = y/x then n =

Prove that : ((x^m)/(x^n))^(m+n-l) xx((x^n)/(x^l))^(n+l-m)xx((x^l)/(x^m))^(l+m-n) =1 .

If a=sum x^(n),b=sum y^(n),c=sum(xy)^(n) where |x|,|y|<1 then

if a=sum x^(n),b=sum y^(n),c=sum(xy)^(n) where |x|,|y|<1 then

if a=sum x^(n),b=sum x^(n),c=sum(xy)^(n)