Home
Class 12
MATHS
int0^[pi/2][sqrttanx+sqrtcotx].dx...

`int_0^[pi/2][sqrttanx+sqrtcotx].dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sqrttanx+sqrtcotx)dx

Integrate: int_0^(pi/2)(sqrttanx)/(sqrttanx+sqrtcotx)dx

I : int_(0)^(pi//2)(sqrtcotx)/(sqrt(tanx)+sqrt(cotx))dx=(pi)/(4) II : int_(0)^(pi//2)(2sinx+3cosx)/(sinx+cosx)dx=(pi)/(4)

If int (sqrttanx + sqrtcotx) dx = a tan^-1 ((tan x - 1)/sqrt(b tan x)) + c , then the value of sqrt(a^4 + b^5) must be

int_0^(pi/2) sin x dx

Evaluate: int (sqrt(tanx)+sqrtcotx)dx

Evaluate: int (sqrttanx+sqrtcotx)dx

int_0^(pi/2) (sqrtcotx)/(sqrttanx+sqrtcotx) dx is equal to :

Prove that: underset0overset(pi/4)int (sqrttanx+sqrtcotx)dx=pi/sqrt2

By using properties of definite integrals, evaluate the following: underset0oversetpi//2 int sqrtcotx/(1+sqrtcotx)dx