Home
Class 12
MATHS
Pd, th, respectively, of Gothar series P...

Pd, th, respectively, of Gothar series Prove if there are terms | log ap1 logbq1 = 0 logc r 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are positive and are the pth, qth and rth terms respectively of a G.P., the the value of |(loga, p, 1),(logb, q, 1),(logc, r, 1)|= (A) 1 (B) pqr(loga+logb+logc) (C) 0 (D) a^pb^qc^r

If a,b c(all positive)are the p th,q th and r th terms repectively of a geometric progression, show that abs((loga,p,1),(logb,q,1),(logc,r,1)) = 0.

If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respectively of a G.P show that, |{:(,log a,p,1),(,log b,q,1),(,log c,r,1):}|=0

If a,b,c are positive and are the pth, qth rth terms respectively of a GP then |(loga,p,1),(logb,q,1),(logc, r,1)|=

If a gt 0, b gt 0, c gt0 are respectively the pth, qth, rth terms of a G.P., then the value of the determinant |(log a,p,1),(log b,q,1),(log c,r,1)| , is

If a gt 0, b gt 0, c gt0 are respectively the pth, qth, rth terms of a G.P., then the value of the determinant |(log a,p,1),(log b,q,1),(log c,r,1)| , is

If a gt0, bgt0,cgt0 are respectively the p^("th"),q^("th"),r^("th") terms of a G.P.,. Then the value of the determinant |{:(loga, p,1),(logb,q,1),(logc,r,1):}| is

If a ,\ b ,\ c are pth, qth and rth terms of a GP, the |loga p1logb q1logc r1| is equal to- log\ a b c b. 1 c. 0 d. p q r

If a, b, c respectively the p^(th), q^(th) and r^(th) elements of a G.P, thenlebrge Delta = [[loga, logb,logc],[p,q,r],[1,1,1]] equals