Home
Class 12
MATHS
let In=int0^(pi/4)tan^nxdx,n>1...

let `I_n=int_0^(pi/4)tan^nxdx`,`n>1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_n=int_0^(pi/4)tan^nxdx , then 1/(I_2+I_4),1/(I_3+I_5), 1/(I_4+I_6), 1/(I_5+I_7)

For n ge 2, let I_n= int_0^(pi//4) tan^n xdx and F_n=I_n+I_(n-2) . Then F_n-F_(n+1)=

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

IfI_n=int_0^(pi/4)tan^n xdx ,(n >1 and is an integer), then I_n+I_(n-2)=1/(n+1) I_n+I_(n-2)=1/(n-1) I_2+I_4,I_4+I_6, ,a r einHdotPdot 1/(2(n+1))

If I_n=int_0^(pi/4) tan^n x dx , ( n > 1 and is an integer), then

If I_n=int_0^(pi//4)tan^("n")x dx , prove that I_n+I_(n-2)=1/(n-1)dot

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =