Home
Class 11
MATHS
lim[x->y](cos^2x-cos^2y)/[x^2-y^2]...

`lim_[x->y](cos^2x-cos^2y)/[x^2-y^2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xrarry)(cos^2x-cos^2y)/(x^2-y^2)

the value of lim_(x->y) (sin^2x-sin^2y)/(x^2-y^2) equals

the value of lim_(x->y) (sin^2x-sin^2y)/(x^2-y^2) equals

the value of lim_(x->y) (sin^2x-sin^2y)/(x^2-y^2) equals

the value of lim_(x->y) (sin^2x-sin^2y)/(x^2-y^2) equals

Evaluate: underset(x rarr y)lim (cos^(2)x - cos^(2)y)/(x^(2) - y^(2))

Prove : underset(xrarry)"lim"(cos^(2)x-cos^(2)y)/(x^(2)-y^(2))=-(sin2y)/(2y)

Prove the following: cos(x+y)cos(x-y)=cos^2y-sin^2x

prove that: (sin2x-sin2y)/(cos2y-cos2x)=cot(x+y)

If x+y=z then cos^(2)x+cos^(2)y+cos^(2)z-2cos x cos y cos z is equal to