Home
Class 12
MATHS
If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, th...

If `I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx`, then

Text Solution

Verified by Experts

`I(m,n)=int_0^1 x^(m-1)(1-x)^(n-1) dx`
`=int_oo^0 1/(1+y)^(m-1)*(y/(1+y))^(n-1)*(1+y)^2dy`
`=int_oo^0 y^(n-1)/(1+y)^(m+n-2)`
`=int_0^oo y^(n-1)/(1+y)^(m+n)dy`
`=int_0^oo x^(n-1)/(1+y)^(m+n)`
option c is correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m,n in I,m,n>=0),th epsilonI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m-n))dxI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n))/((1+x)^(m+n))dx

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0 . int_(0)^(1)(x^(m-1)+x^(n-1))/((1+x)^(m+n))dx=

If I(mn)=int_(0)^(1)x^(m)(1-x)^(n)dx,(m, n epsilon I, m,n ge 0 ) , then

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dx=