Home
Class 12
MATHS
lim(n->oo) (1.1!+2.2!+...n.n!)/((n+1)!)...

`lim_(n->oo) (1.1!+2.2!+...n.n!)/((n+1)!)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

lim_ (n rarr oo) (1 * 1! + 2 * 2! + ...... n * n!) / ((n + 1)!)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is

lim_(n->oo)2^(n-1)sin(a/2^n)