Home
Class 12
MATHS
A normal is drawn at a point P(x , y) o...

A normal is drawn at a point `P(x , y)` of a curve. It meets the x-axis and the y-axis in point `A` AND `B ,` respectively, such that `1/(O A)+1/(O B)` =1, where `O` is the origin. Find the equation of such a curve passing through `(5, 4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

A normal is drawn at a point P(x,y) of a curve.It meets the x-axis and the y-axis in point A AND B, respectively,such that (1)/(OA)+(1)/(OB)=1, where O is the origin.Find the equation of such a curve passing through (5,4)

A normal is drawn at a point P(x,y) on a curve.It meets the x-axis and thedus ofthe director such that (x intercept) ^(-1)+(y- intercept) ^(-1)=1, where O is origin,the curve passing through (3,3).

A normal is drawn at a point P(x,y) of a curve It meets the x-axis at Q If PQ is of constant length k such a curve passing through (0,k) is

A normal is drawn at a point P(x , y) of a curve. It meets the x-axis at Qdot If P Q has constant length k , then show that the differential equation describing such curves is y(dy)/(dx)=+-sqrt(k^2-y^2) . Find the equation of such a curve passing through (0, k)dot

A normal is drawn at a point P(x , y) of a curve. It meets the x-axis at Qdot If P Q has constant length k , then show that the differential equation describing such curves is y(dy)/(dx)=+-sqrt(k^2-y^2) . Find the equation of such a curve passing through (0, k)dot

A normal is drawn at a point P(x , y) of a curve. It meets the x-axis at Qdot If P Q has constant length k , then show that the differential equation describing such curves is y(dy)/(dx)=+-sqrt(k^2-y^2) . Find the equation of such a curve passing through (0, k)dot

A normal is drawn at a point P(x , y) of a curve. It meets the x-axis at Qdot If P Q has constant length k , then show that the differential equation describing such curves is y(dy)/(dx)=+-sqrt(k^2-y^2) . Find the equation of such a curve passing through (0, k)dot

A normal is drawn at a point P(x , y) of a curve. It meets the x-axis at Qdot If P Q has constant length k , then show that the differential equation describing such curves is y(dy)/(dx)=+-sqrt(k^2-y^2) . Find the equation of such a curve passing through (0, k)dot

A normal is drawn at a point P(x , y) of a curve. It meets the x-axis at Qdot If P Q has constant length k , then show that the differential equation describing such curves is y(dy)/(dx)=+-sqrt(k^2-y^2) . Find the equation of such a curve passing through (0, k)dot