Home
Class 12
MATHS
Let tn =n.(n!) Then sum(n=1)^(15) tn is...

Let `t_n =n.(n!)` Then `sum_(n=1)^(15) t_n` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a series t_n=n/((n+1)!) then sum_(n=1)^20 t_n is equal to :

If in a series t_n=n/((n+1)!) then sum_(n=1)^20 t_n is equal to :

if in a series t_(n)=(n+1)/((n+2)!) then sum_(n=0)^(10)t_(n) equal to

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

If t_(n) = 1/((n+1)!) , then sum_(n=1)^(infty) t_(n)=