Home
Class 12
MATHS
If x=a^sqrt[sin^-1t] and y=a^sqrt[cos^-1...

If `x=a^sqrt[sin^-1t]` and `y=a^sqrt[cos^-1t]`, then show that `[dy]/[dx]=-y/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = sqrt(a^(sin^(-1)t)) , y = sqrt(a^(cos^(-1)t) then show that, dy/dx=-y/x.

If x=sqrt(a^(sin^(-1)t)),y=sqrt(a^(cos^(-1)t)) , then show that dy/dx=-y/x

If x^2 = a^(sin^(-1)t) and y^2= a^(cos^(-1)t) then show that (dy)/(dx)=-y/x .

If x=sqrt(a^(sin^(-1)t)" and "y=sqrt(a^(cos^(-1)t) show that (dy)/(dx)=-(y)/(x) .

If x = sqrt(a^(sin^(-1)t)) and y= sqrt(a^(cos^(-1)t) show that (dy)/(dx)= -y/x .

If x=sqrt(a^(sin^(-1)t)),y=sqrt(a^(cos^(-1)t)) , then show that (dy)/(dx)=-(y)/(x) .

If x= sqrt ( a^( sin^(-1) t) ) and y= sqrt ( a^( cos^(-1) t) ), then show that dy/dx = -(y/x)

If x=sqrt(a^sin^((-1)t)) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x .