Home
Class 12
MATHS
The area bounded by the curve y le x^(2)...

The area bounded by the curve `y le x^(2) +3x, 0 le y le 4, 0 le x le 3`, is (A) `(59)/(6)` (B) `(57)/(4)` (C) `(59)/(3)` (D) `(57)/(6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area bounded by the curves x ^(2) le y le x + 2:

The area bounded by 4x^2 le y le 8x+12 is -

The area bounded by the curve y = sin^(2) x, 0 le x le pi/2 , X axis and the line x = pi/2 is

The area bounded by y=x^(2), y=sqrt(x), 0 le x le 4 is

The area bounded by the y-axis, y=cos x and y=sin x, 0 le x le pi//4 , is

The area between the curves y=x^(2) and y=x^(1//3), -1 le x le 1 is

2 le 3x - 4 le 5

The area of the region A= {(x,y) in R xx R|0 le x le 3, 0 le y le 4, x^(2) + 3x} is

Find the area of region {(x,y):0leylex^(2)+1, 0 le y le x+ 1, 0 le x le 2} .