Home
Class 12
MATHS
let 2..^(20)C(0)+5.^(20)C(1)+8.^(20)C(2)...

let `2..^(20)C_(0)+5.^(20)C_(1)+8.^(20)C_(2)+?.+62.^(20)C_(20)`. Then sum of this series is (A) `16.2^(22)` (B) `8.2^(21)` (C) `8.2^(21)` (D) `16.2^(21)`

Promotional Banner

Similar Questions

Explore conceptually related problems

1.^(20)C_(1)-2.^(20)C_(2)+3.^(20)C_(3)-...-20.^(20)C_(20)

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is (A) 2^(21) - 2^(11) (B) 2^(21) - 2^(10) (C) 2^(20) - 2^(9) (D) 2^(20) - 2^(10)

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

The value of 1^(1).^(20)C_(1)+2^(2).^(20)C_(2)+3^(2).^(20)C_(3)+….+(20)^(2).^(20)C_(20) is

sum_(k=0)^(20)(.^(20)C_(k))^(2) is equal to

The sum of the series Sigma_(r = 0)^(10) ""^(20)C_(r) " is " 2^(19) + (""^(20)C_(10))/(2)