Home
Class 12
MATHS
Solution of differential equation (x^(2)...

Solution of differential equation `(x^(2)+1)^(2)(dy)/(dx)+2x(x^(2)+1)y=1` is (A) `y=(tan^(-1))/(x^(2)+1)+C` (B) `y=tan^(-1)x+C` (C) `y(x^(2)+1)=tan^(-1)x+C` (D) `y(tan^(-1)x)=x^(2)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x) is :

The solution of differential equation (1+x^(2)) (dy)/(dx) + y = e^(tan^(-1)x)

The solution of the differential equation (1+y^2)tan^(-1) x dx +(1+x^2)2ydy=0 is

The solution of the differential equation (1+y^(2)) tan^(-1) x dx + y(1+x^(2)) dy = 0 is

The solution of the differential equation (1+x^(2))(dy)/(dx)+1+y^(2)=0, is tan^(-1)x-tan^(-1)y=tan^(-1)Ctan^(-1)y-tan^(-1)x=tan^(-1)Ctan^(-1)y=tan^(-1)x=tan Ctan^(-1)y-tan^(-1)x=tan^(-1)C

The solution of the differential equation (x^(2)+1)(dy)/(dx)+(y^(2)+1)=0 is y=2+x^(2)by=(1+x)/(1-x)c*y=x(x-1)d.y=(1-x)/(1+x)

The solution of the differential equation (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2)) is (A)tan^(-1)((x)/(y))^(2)=log y+c(B)tan^(-1)((y)/(x))=log x+c(C)tan^(-1)((x)/(y))=log x+c(D)tan^(-1)((y)/(x))=log y+c

The solution of the differential equation (x+y)^(2)(dy)/(dx)=1, satisfying the condition y(1)=0 is (A)y+(pi)/(4)=tan^(-1)(x+y)(B)y-(pi)/(4)=tan^(-1)(x+y)(C)y=tan^(-1)x(D)y=tan^(-1)(ln x)+1