Home
Class 12
MATHS
Find the magnitude of projection of vect...

Find the magnitude of projection of vector `2i+3j+k`, on a vactor which is perpendicular to the plane containing vectors `i+j+k` and `i+2j+3k` (A) `(sqrt(3))/(sqrt(2))` (B) `(sqrt(2))/(sqrt(3))` (C) `(4)/(sqrt(3))` (D) `(2sqrt(2))/(sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find vectors perpendicular to the plane of vectors a=2i-6j+3k" and "b=4i+3j+k .

(sqrt(3)+i sqrt(2))(sqrt(2)+i sqrt(3))= ..........

The magnitude of the projection of the vector 2hat i+3hat j+hat k on the vector perpendicular to the plane containing the vectors hat i+hat j+widehat K and hat j+3hat 2j+3hat k is :

( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

((3+i sqrt(3))(3-i sqrt(3)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))

([(sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])