Home
Class 11
MATHS
If tan x =(2b)/ (a- c), y = acos^2 x + 2...

If `tan x =(2b)/ (a- c)`, `y = acos^2 x + 2bsin x cos x + csin^2 x`, `z=asin^2 x-2b sin x cos x + c cos^2 x`, prove that `y-z=a-c`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan x= (2b)/(a-c), a!=c, y = a cos^2 x +2b sin x*cos x + c sin^2x, z = a sin^2 x-2b sin x*cos x + c.cos^2x, then

If tanx = (2b)/(a-c) , a ne c, y = a cos^2 x + 2b sinx.cos x + c sin^2 x z = a sin^2 x -2b sinx.cos x+"c" cos ^2x then

If tan x=(2b)/(a-c),y=a cos^(2)x+2b sin x cos x+c sin^(2)xz=a sin^(2)x-2b sin x cos x+c cos^(2)x, that y-z=a-c.

If quad tan x=(2b)/(a-c),a!=c,y=a cos^(2)x+2b sin x*cos x+c sin^(2)x,z=a sin^(2)x-2b sin x*cos x+c cos^(2)x, then

If tanx=(2b)/(a-c) , (a ne c) y=acos^2x+2bsinxcosx+csin^2x and z=asin^2x-2bsinxcosx+c cos^2x then

If y=acos^(2)x+2bsinxcosx+csin^(2)xandz=asin^(2)x-2bsinxcosx+c cos^(2)x , then

cos x + cos y + cos z = 0 and sin x + sin y + sin, then cos ^ (2) ((xy) / (2)) =

If x + y = z then cos ^ (2) x + cos ^ (2) y + cos ^ (2) z-2cos x cos y cos z =