Home
Class 12
MATHS
Prove that |(1+a^2,ab,ac),(ab,1+b^2,bc),...

Prove that `|(1+a^2,ab,ac),(ab,1+b^2,bc),(ca,cb,1+c^2)| =1+a^2+b^2+c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .

Prove that, abs((-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)) =4 a^2b^2c^2 .

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2):}|=4a^2b^2c^2

Prove that, abs((a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)) =1+ a^2+b^2+c^2 .

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1):}|=1+a^2+b^2+c^2

|(a^(2)+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|= 1 + a^2 + b^2 + c^2 .

Prove that: |(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^2+c^2

Using properties of determinants, prove the following |(a^2,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

Using properties of determinants, prove the following |(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .