Home
Class 11
MATHS
If z(r)(r=0,1,2,…………,6) be the roots of ...

If `z_(r)(r=0,1,2,…………,6)` be the roots of the equation
`(z+1)^(7)+z^7=0`, then `sum_(r=0)^(6)"Re"(z_(r))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(r),r=1,2,3,...,50 be the roots of the equation sum_(r=0)^(50)(z)^(r)=0 . If sum_(r=1)^(50)1/(z_(r)-1)=-5lambda , then lambda equals to

Let z_(r),r=1,2,3,...,50 be the roots of the equation sum_(r=0)^(50)(z)^(r)=0 . If sum_(r=1)^(50)1/(z_(r)-1)=-5lambda , then lambda equals to

Let z_(r),r=1,2,3,...,50 be the roots of the equation sum_(r=0)^(50)(z)^(r)=0 . If sum_(r=1)^(50)1/(z_(r)-1)=-5lambda , then lambda equals to

Let z_(r),r=1,2,3,...,50 be the roots of the equation sum_(r=0)^(50)(z)^(r)=0 . If sum_(r=1)^(50)1/(z_(r)-1)=-5lambda , then lambda equals to

If z_(r):r=1,2,3,,50 are the roots of the equation sum_(r=0)^(50)z^(r)=0, then find the value of sum_(r=0)^(50)(1)/(z_(r)-1)

If z_r : r=1,2,3, ,50 are the roots of the equation sum_(r=0)^(50)z^r=0 , then find the value of sum_(r=0)^(50)1/(z_r-1)

If z_r : r=1,2,3, ,50 are the roots of the equation sum_(r=0)^(50)z^r=0 , then find the value of sum_(r=0)^(50)1/(z_r-1)

Let z_k be the roots of the equation (z+1)^7+z^7=0 , then sum _(k=0)^6 Re(z_k) is -k/2 , then k is-------------

If z^(2)+z+1=0 then sum_(r=1)^(6)(z^(r)+(1)/(z^(r)))^(2)=

If z^(2)+z+1=0, then sum_(r=1)^(6)(z^(r)+z^(-r))^(2) is