Home
Class 12
MATHS
int0^x|sint|dt, where x in (2npi,(2n+1)p...

`int_0^x|sint|dt`, where `x in (2npi,(2n+1)pi)`,`ninN`,is equal to (A) `4n-cosx` (B) `4n-sinx` (C) `4 n+1-cosx` (D) `4n-1-cosx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(x)|sin t|dt, where x in(2n pi,(2n+1)pi)n in N, is equal to (A)4n-cos x(B)4n-sin x(C)4n+1-cos x(D)4n-1-cos x

int_(0)^(x)[sin t]dt, where x in(2n pi,(2n+1)pi),n in N, and [.] denotes the greatest integer function is equal to -n pi(b)-(n+1)pi2n pi(d)-(2n+1)pi

int_0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] denotes the greatest integer function is equal to -npi (b) -(n+1)pi 2npi (d) -(2n+1)pi

int_0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] denotes the greatest integer function is equal to -npi (b) -(n+1)pi 2npi (d) -(2n+1)pi

Evaluate: int_0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[dot] denotes the greatest integer function.

Evaluate: int_0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[dot] denotes the greatest integer function.

Evaluate: int_(0)^(x)[cos t]dt where x in(2n pi,4n+1(pi)/(2)),n in N, and.] denotes the greatest integer function.

If sin^4 x+cos^4x=sinx.cosx, then x is equal to (A) npi, nepsilon I (B) (6n=1) pi/6, n epsilon I (C) (4n+1) pi/4, n epsilon I (D) none of these

The value of int_0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N , is equal to where [.] represents greatest integer function. pi/2(2n-1)-2x pi/2(2n-1)+x pi/2(2n+1)-x (d) pi/2(2n+1)+x

The value of int_0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N , is equal to where [.] represents greatest integer function. pi/2(2n-1)-2x pi/2(2n-1)+x pi/2(2n+1)-x (d) pi/2(2n+1)+x