Home
Class 12
MATHS
Consider the function f(x)= 1-x , 0<=x<=...

Consider the function `f(x)= 1-x , 0<=x<=1` and `f(x)=x+2, 1 < x < 2` and `f(x)=4-x , 2<=x<=4` find `lim_(x->1) f(f(x))` and `lim_(x->2) f(f(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f (x) = 1/x^2 for x > 0. To find lim_(x to 0) f(x) .

Consider the function f(x)=1/x^(2) for x gt 0 . To find lim_(x to 0) f(x) .

Consider the function : f (x) ={(x-2,x 0):} . To find lim_(x to 0) f(x) .

Consider the function f(x)={(sinx/x, x Find lim_(xrarr0)f(x)

Consider the function f(x) =x^2 + x . Find the lim_(xrarr1) f(x)

For the function f(x) = 2 . Find lim_(x to 1) f(x)

For the function f(x) = 2 . Find lim_(x to 1) f(x)

Consider the function : f (x) ={(x+2, x ne 1),(0,x=1):} . To find lim_(x to 1) f(x) .

Consider the function f(x)=(x-1)/(x+1) What (f(x)+1)/(f(x)-1) equal to ?