Home
Class 12
MATHS
The limiting value of the function f(x)=...

The limiting value of the function `f(x)=(2sqrt2-(cosx+sinx)^3)/(1-sin2x)` when `x->pi/4` is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->pi/4)(2sqrt(2)-(cosx+sinx)^3)/(1-sin2x)=

Find the value of lim_(x to pi/4) (4sqrt2-(cosx+sinx)^5)/(1-sin2x)

The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt(1-sin^2x) whenever it is defined is

Evaluate : lim_(x to pi/4)(4sqrt2-(cosx+sinx)^5)/(1-sin 2x)

The value of lim_(xto(pi)/4)(4sqrt(2)-(cosx+sinx)^(5))/(1-sin2x) is

Evaluate : lim_(xto(pi)/(4))(4sqrt2-(cosx+sinx)^(5))/(1-sin2x)

The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in (-pi//2,pi//2) , is

The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in (-pi//2,pi//2) , is

lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to