Home
Class 12
MATHS
(d^(2)y)/(dx^(2))=x sin x+e^(x)...

(d^(2)y)/(dx^(2))=x sin x+e^(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution y(x) of the differential equation (d^(2)y)/(dx^(2))=sin3x+e^(x)+x^(2) when y_(1)(0)=1 and y(0)=0 is

The solution of the differential equation (d^(2)y)/(dx^(2))=sin3x+e^(x)+x^(2) when y_(1)(0)=1 and y(0) is

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y= e^(tan x) then show that, (cos^(2)x) (d^(2)y)/(dx^(2))- (1+ sin 2x) (dy)/(dx)=0

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=e^(-x)cos x, show that (d^(2)y)/(dx^(2))=2e^(-1)sin x