Home
Class 11
MATHS
[" (A) If "a=j+sqrt(3)hat k,bar(b)=-hat ...

[" (A) If "a=j+sqrt(3)hat k,bar(b)=-hat j+sqrt(3)hat k" and "vec c=2sqrt(3)hat k" form a triangle,"],[" then the internal angle of the triangle between "(1)/(a)" and "hat b" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a=hat i+sqrt(3)hat k,vec b=-hat j+sqrt(3)hat k and vec c=2sqrt(3k) form a triangle,then internal (p) angle of the triangle between vec a and vec b is

If vec a=7 hat i-4 hat j-4 hat k and vec b=-2 hat i- hat j+2 hat k , determine vector vec c along the internal bisector of the angle between of the angle between vectors vec a and vec b such that | vec c| =5sqrt(6)

If vec a=7 hat i-4 hat j-4 hat k and vec b=-2 hat i- hat j+2 hat k , determine vector vec c along the internal bisector of the angle between of the angle between vectors vec a and vec b such that | vec c| =5sqrt(6)

Show that the vectors vec a=3hat i-2hat j+hat k,vec b=hat i-3hat j+5hat k,vec c=2hat i+hat j-4hat k form a right angled triangle.

Show that the vectors vec a=3 hat i-2 hat j+ hat k , vec b= hat i+3 hat j+5 hat k , vec c=2 hat i+ hat j-4 hat k form a right angled triangle.

Show that the vectors vec a=3 hat i-2 hat j+ hat k ,\ vec b= hat i-3 hat j+5 hat k ,\ vec c=2 hat i+ hat j-4 hat k form a right angled triangle.

Show that the vectors vec a=2 hat i- hat j+ hat k , vec b=hat i-3 hat j-5 hat k , vec c=3 hat i-4hat j-4 hat k form a right angled triangle.

If the vectors bar A B=3 hat i+4 hat k and bar A C=5 hat i-2 hat j+4 hat k are the sides of a triangle ABC, then the length of the median through A is (1) sqrt(72) (2) sqrt(33) (3) sqrt(45) (4) sqrt(18)

If the vectors hat i- hat j , hat j+ hat k and vec a form a triangle, then vec a may be a. - hat i- hat k b. hat i-2 hat j- hat k c. 2 hat i+ hat j+ hat k d. hat i+ hat k