Home
Class 11
MATHS
If x=ycos((2pi)/3)=zcos((4pi)/3), then x...

If `x=ycos((2pi)/3)=zcos((4pi)/3)`, then xy+yz+zx=

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=y cos((2pi)/(3))=z cos ((4pi)/(3)) then xy+yz+zx=

If x=y cos((2 pi)/(3))=z cos((4 pi)/(3)), then xy+yz+zx=

If x=ycos((2pi)/(3))=zcos((4pi)/(3)) ,then what is xy + yz + zx equal to ?

If xcostheta=ycos(theta+(2pi)/3)=zcos(theta+(4pi)/3) then the value of 1/x+1/y+1/z is equal to

If xcostheta=ycos(theta+(2pi)/(3))=zcos(theta+(4pi)/(3)) , then (1)/(x)+(1)/(y)+(1)/(z)=?

If x costheta=y cos (theta+(2pi)/3)=z cos(theta+(4pi)/3) show that xy + yz+ zx = 0

If x=y cos backslash(2 pi)/(3)=z cos backslash(4 pi)/(3), then xy+yz+zx is equal to

If xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3) , prove that x y+y z+z x=0.

If xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3) , prove that x y+y z+z x=0.