Home
Class 12
MATHS
" Prove that "int(0)^(2a)f(x)dx=int(0)^(...

" Prove that "int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

int_(0)^(a)[f(x)+f(a-x)]dx=

Prove that int_(0)^(a)f(x)g(a-x)dx=int_(0)^(a)g(x)f(a-x)dx .

Prove that: int_0^(2a)f(x)dx=int_0^(2a)f(2a-x)dxdot

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (f) int_(0)^(pi)(xdx)/(a^(2)cos^(2)x + b^(2)sin^(2)x)