Home
Class 10
MATHS
(sectheta+csctheta)^2-(tantheta+cottheta...

`(sectheta+csctheta)^2-(tantheta+cottheta)^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: (cosec theta-sintheta)^2+(sectheta-costheta)^2-(tantheta-cottheta)^2=1

(tantheta-sectheta)^2

(csctheta-sintheta")(sectheta-costheta)(tantheta+cottheta)=

(cosectheta-sintheta)(sectheta-costheta)(tantheta+cottheta)=?

Prove that ("cosec "theta-sintheta)(sectheta-costheta)(tantheta+cottheta)=1

Prove the following (cosectheta-sintheta)(sectheta-costheta)=1//(tantheta+cottheta)

If theta epsilon (0, pi/2) then the value of |((sintheta+cosectheta)^2, (sintheta- cosectheta)^2,1 ),((costheta+sectheta)^2, (costheta-sectheta)^2, 1),((tantheta+cottheta)^2, (tantheta-cottheta)^2, 1)|= (A) sintheta+costhetas+tantheta (B) 1 (C) 0 (D) 4

sqrt(sec^2theta+cosec^2theta)=tantheta+cottheta=sectheta.cosectheta. .

If sectheta=5/4 , find the value of (sintheta-2costheta)/(tantheta-cottheta)