Home
Class 11
MATHS
(2sin theta*cos theta-cos theta)/(1-sin ...

(2sin theta*cos theta-cos theta)/(1-sin theta+sin^(2)theta-cos^(2)theta)=cot theta

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove : (2 sin theta cos theta-cos theta)/(1-sin theta+sin^(2) theta-cos^(2) theta)=cot theta

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

(sin3 theta+cos3 theta)/(cos theta-sin theta)=1+2xx sin2 theta

If f(theta)=|(cos^(2) theta, cos theta sin theta, -sin theta),(cos theta sin theta, sin^(2) theta, cos theta),(sin theta, -cos theta, 0)| then f((pi)/12)=

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta

2(cos theta+cos2 theta)+(1+2cos theta)sin2 theta=2sin theta

(sin theta)/(cot theta+cos ec theta)-(sin theta)/(cot theta-cos ec theta)=

If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi], then