Home
Class 10
MATHS
Prove that 2cos^(2)theta-cos^(4)theta+si...

Prove that `2cos^(2)theta-cos^(4)theta+sin^(4)theta=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta

Prove that: 1+cos^(2)2 theta=2(cos^(4)theta+sin^(4)theta)

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

If sin theta+sin^(2)theta+sin^(3)theta=1, then prove that cos^(6)theta-4cos^(4)theta+8cos^(2)theta=4

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .