Home
Class 11
MATHS
[" Show that if "n>2],[cos^(2)(pi)/(n)+c...

[" Show that if "n>2],[cos^(2)(pi)/(n)+cos^(2)(3 pi)/(n)+cos^(2)(5 pi)/(n)+......n" terms "=(n)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that if n>2cos^(2)((pi)/(n))+cos^(2)((3 pi)/(n))+cos^(2)((5 pi)/(n))+...nterms=(n)/(2)

Show that if n gt 2 cos^2 (pi/n) + cos^2 ((3pi)/n)+ cos^2((5pi)/n)+ ... n terms =n/2

Value of cos((pi)/(2n+1))+cos((3 pi)/(2n+1))+cos((5 pi)/(2n+1))+ upto n terms equals

show that :sin^(2)alpha+sin^(2)(alpha+(2 pi)/(n))+sin^(2)(alpha+(4 pi)/(n))+n terms =(n)/(2)

If quad (cos^(2)pi)/(2)+(cos^(2)(2 pi))/(n)+...+(cos^(2)((n-1)pi))/(n) then s equals

show that : sin^2 alpha + sin^2(alpha +( 2pi)/n) +sin^2(alpha +( 4pi)/n) + ..... n terms = n/2

If S=cos^2(pi/n) + cos^2((2pi)/n) +....+ cos^2((n-1)pi)/n , then S equals

lim_(n rarr oo)n sin\ (2 pi)/(3n)*cos\ (2 pi)/(3n)

Show that: cos\ pi/n +cos\ (2pi)/n +…+cos\ (n-1)/n pi =0

Show that: cos\ pi/n +cos\ (2pi)/n +…+cos\ (n-1)/n pi =0