Home
Class 12
MATHS
Prove that loge ((n^2)/(n^2-1))=1/(n^2)...

Prove that `log_e ((n^2)/(n^2-1))=1/(n^2)+1/(2n^4)+1/(3n^6)+........oo`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : log_e(n+1)-log_e(n-1)=2[1/n+1/(3n^3)+1/(5n^5)+...]

Prove that : log_e(n+1)-log_en=2[1/(2n+1)+1/(3(2n+1)^3)+1/(5(2n+1)^5)+...]

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

1+((log n)^(2))/(2!)+((Log n)^(4))/(4!)+...... oo =

Prove that log_n(n + 1) > log_(n + 1) (n + 2) , for n > 1.

Prove that 1^(2)+2^(2)+3^(2)+.....+n^(2)=(n(n+1)(2n+1))/6

Prove that (1)/(n!)+(1)/(2!(n-2)!)+(1)/(4!(n-4)!)+...=(1)/(n!)2^(n-1)

Show that ("lim")_(n vec oo)(1/(n+1)+1/(n+2)++1/(6n))=log6

Show that, lim_(n to oo)((1)/(n + 1)+(1)/(n+2)+…+(1)/(6n))=log 6 .