Home
Class 11
MATHS
Find the values of theta in the interval...

Find the values of `theta` in the interval `(-pi/2,pi/2)` satisfying the equation `(1-tantheta)(1+tantheta)sec^2theta+2^tan^(2theta)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^tan2θ =0

Find the values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^tan2θ =0

Find the values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^(tan^(2)θ) =0

Find all values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^(tan^2theta)=0

Find all values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^(tan^2theta)=0

Find the values of theta in the interval (-(pi)/(2),(pi)/(2)) satisfying the equation (1-tan theta)(1+tan theta)sec^(2)theta+2^(tan^(2)theta)=0

The number of values of theta in the interval (-pi/2,pi/2) satisfying the equation (sqrt(3))^(sec^2theta)=tan^4theta+2tan^2theta is

If theta in the interval (0,pi/2) satisfying the equation cos2theta*sec^(4)theta+sec^(2)theta=0 , then sin^(2)theta =

The number of values of theta in the interval (-pi/2,pi/2) satisfying the equation (sqrt(3)) ^ sec^2theta = tan^4theta+2tan^2theta is

The number of real values of theta lying in the interval (-pi/2, pi/2) and satisfying the equation (sqrt3)^(sec^2theta)=tan^4theta+2tan^2theta is