Home
Class 12
MATHS
bara,barb,barc are three unit vectors su...

`bara,barb,barc` are three unit vectors such that `bar a xx (bar b xx bar c)1/2bar b` , then `(bar a, barb) =(bar a,bar c)=(bar b,bar c)`, are non-collinear)

Promotional Banner

Similar Questions

Explore conceptually related problems

bar a, bar b, bar c are three vectros, then prove that: (bar a xx bar b) xx bar c = (bar a. bar c) bar b-(bar b. bar c) bar a.

bar(a),bar(b) and bar( c ) are three unit vectors. bar(a)_|_bar(b) and bar(a)||bar( c ) then bar(a)xx(bar(b)xx bar( c )) = …………….

(d) answer ANY one question :1. bar a, bar b and bar c be three vectors such that bar a +bar b+ bar c =0 and |bar a|=1, |bar b|=4,|bar c |=2 . Evlautae bar a.bar b + bar b.bar c+bar c.bar a .

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

If bar(a),bar(b) and bar( c ) are unit vectors such that bar(a)+bar(b)+bar( c )=bar(0) , then the value of bar(a).bar(b)+bar(b).bar( c )+bar( c ).bar(a)=…………

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

If bara,barb,barc are non-coplaner, then show that the vectors bara -bar b , barb + barc ,bar c + bara are coplanar

If bar r=l(bar b xx bar c)+m(bar c xx bar a)+n(bar a xx bar b) and [bar a bar b bar c]=2 , then l+m+n is equal to

If bar a, bar b " and " barc are unit coplanar vetors then [2 bar a -bar b " "2 bar b -barc " " 2 barc-bara]=....