Home
Class 12
MATHS
If bar a is a unit vector then bar a x...

If `bar a` is a unit vector then `bar a xx {bar a xx (bar a xx bar b)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a) is a unit vector then bar(a)xx{bar(a)xx(bar(a)xxbar(b))}

bar a, bar b, bar c are three vectros, then prove that: (bar a xx bar b) xx bar c = (bar a. bar c) bar b-(bar b. bar c) bar a.

If bar a = 2 bar I + bar j - bar k, bar b = - bari + 2 bar j - 4 bar k and bar c = bar I + bar j + bar k , then find ( bar a xx bar b) cdot (bar b xx bar c) .

If bar(a),bar(b),bar( c ) and bar(d) are coplanar vectors then (bar(a)xx bar(b))xx(bar( c )xx bar(d)) = …………..

if bar a+2 bar b+3bar c=bar 0 then bar axxbar b+bar b xx bar c+bar cxx bara = lambda (bar b xx bar c) ,where lambda=

In the space A(bar(a)) is a point and bar(b) is a vector. If P(bar(r )) is any point such that bar(r ) xx bar(b) = bar(a) xx bar(b) then show that locus of P is a straight line.

If bar(a) and bar(b) are unit vectors then the vectors (bar(a)+bar(b))xx(bar(a)xxbar(b)) is parallel to the vector

If bar = hat i + hat j and bar b = 2 hat i - hat k then the intersection piont of the lines bar r xx bar a = bar b xx bar a and bar r xx bar b = bar a xx bar b is .............

If bar(a)bar(b)bar(c ) and bar(d) are vectors such that bar(a) xx bar(b) = bar(c ) xx bar(d) and bar(a) xx bar(c ) = bar(b)xxbar(d) . Then show that the vectors bar(a) - bar(d) and bar(b) -bar(c ) are parallel.