Home
Class 12
MATHS
For what value of k is the followinf fun...

For what value of k is the followinf function continuous at x = `-pi/6`. Where `f(x) = (sqrt3 sin x + cos x)/( x + pi/6) , x != -pi/6 and f(x) = k, x = - pi/6`

Text Solution

Verified by Experts

`lim_(x->a^+)f(x)=f(a)=lim_(x->0^-)f(x)`
`lim_(x->-pi/6^+)(sqrt3sinx+cosx)/(x+pi/6)`
`lim_(x->-pi/6^+)(sqrt3/2sinx+cosx*1/2)^2/(x+pi/6)`
`lim_(h->0)(sinh/h)*2=2`
`f(-pi/6)=2`.
Promotional Banner

Similar Questions

Explore conceptually related problems

For what value of k is the following function continuous at x=-(pi)/(6)?f(x)={(sqrt(3)sin x+cos x)/(x+((pi)/(6))), when x!=-(pi)/(6) and k,where x=-(pi)/(6)

For what value of k is the following function continuous at x=-(pi)/(6)?f(x)={(sqrt(3)sin x+cos x)/(x+(pi)/(6)), when x!=-(pi)/(6)k, whenx =(pi)/(6)

For f(x) = sqrt3 sin x + 3 cos x , the point x = pi/6 is

If f(x) is continuous at x=pi/2 , where f(x)=(cos x )/(sqrt(1-sinx)) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x = pi , where f(x)=(sqrt(2+cos x)-1)/((pi-x)^(2))", for " x!= pi , then f(pi)=

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If f(x) is continuous at x=pi/2 , where f(x)=(3^(x- pi/2)-6^(x- pi/2))/(cos x) , for x != pi/2 , then f(pi/2)=

If f (X) = 2 sin 3 x + 3 cos 3 x , then at x = ( 5 pi)/( 6) , f (x) is