Home
Class 12
MATHS
[" 15.) Using the property of determinan...

[" 15.) Using the property of determinants prove the following: "],[[1+a^(2)-b^(2)],[2ab,1-a^(2)+b^(2)],[2b,-2aquad 1-a^(2)-b^(2)]|=(1+a^(2)+b^(2))^(3)]

Promotional Banner

Similar Questions

Explore conceptually related problems

1+a^(2)-b^(2),2ab,-2b2ab,1-a^(2)+b^(2),2a2b,-2a,1-a^(2)-b^(2)]|=(1+a^(2)+b^(2))^(3)

|[1+a^(2)-b^(2),2ab,-2b],[2ab,1-a^(2)+b^(2),2a],[2b,-2a,1-a^(2)-b^(2)]| =

Using properties of determinants, prove that: |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))|=(1+a^(2)+b^(2))^(3)

Answer any three questions Using properties of determinants, prove the following abs{:(1+a^2 - b^2,2ab,-2b),(2ab,1-a^(2) +b^(2) ,2a),(2b,-2a,1-a^2 -b^2):}=(1+a^2 +b^2)^3.

Prove that |{:(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2)):}|=(1+a^(2)+b^(2))^(3)

Show that |(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2))|=(1+a^(2)+b^(2))^(3)

By using the properties of determinants,prove that |[1+a^2-b^2,2ab ,-2b],[2ab,1-a^2+b^2,2a],[2b ,-2a,1-a^2-b^2]|=(1+a^2+b^2)^3

Using properties of determinants,prove the following: det[[a^(2),ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=1+a^(2)+b^(2)+c^(2)